

### **PART NUMBER**

## Isocon

### **CSMRLVGXXA**

**ISSUE 2** 

### COMPONENT SPECIFICATION

### Component Specification For Hermetically Sealed, Radiation-Hard Latching Solid State Relay

| Features                                                                  | Applications                                           |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| <ul> <li>Low on-state resistance</li> </ul>                               | ■ Designed for 10 to 50V <sub>DC</sub> Bus Application |  |  |
| <ul> <li>Selection of Operating Current and Voltage</li> </ul>            | <ul> <li>Space Systems/Satellites</li> </ul>           |  |  |
| <ul> <li>SPST, SPDT, DPST, DPDT</li> </ul>                                | <ul> <li>Space Battery Management Systems</li> </ul>   |  |  |
| <ul> <li>Full Military temperature range -55°C -<br/>+125°C</li> </ul>    | Bus Control                                            |  |  |
| <ul> <li>Military and Space Screening</li> </ul>                          | <ul> <li>Aerospace Power Distribution</li> </ul>       |  |  |
| <ul> <li>Compatible with µC Drive</li> </ul>                              | <ul> <li>Power Isolation and Control</li> </ul>        |  |  |
| <ul> <li>Internally Isolated</li> <li>Output Currents up to 9A</li> </ul> |                                                        |  |  |

### DESCRIPTION

ISOCOM Latching Solid State Relays are designed to replace existing electro-mechanical relays (EMR). The CSMRLVGXXA is available in the single pole single throw (SPST), single pole double throw (SPDT), double pole single throw (DPST) and double pole double throw (DPDT) configuration. They are resilient to damage from shock and immune to contact-related problems (arcing, contamination) that are associated with mechanical equivalents. They are also lightweight in comparison to the EMR. Coupling between the input, output and power bus stages offers an effective isolation up to 500V. The latch and reset input stages are designed to directly interface with standard microcontrollers ( $\mu$ C), requiring low current (< 10mA) with 3.3V or 5V logic. This device offers various operating voltage ranges from 10 to 50V with current capabilities up to 9A. Furthermore, it is featured in a 12 Pin Flatpack Power Package where each pin is isolated with a glass seal. This package comes with a gold plate finish and solder dip options available.









ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



### **STANDARDS**

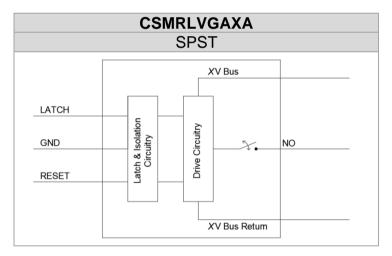
The following specifications have been complied with in the manufacturing of this product -

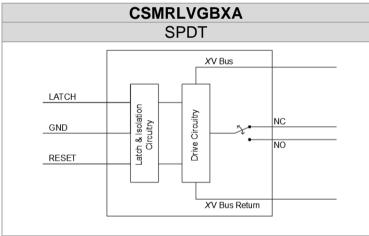
### **Aerospace Compliance Standards**

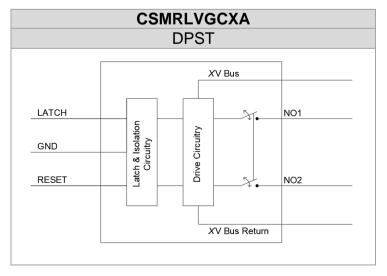
AS9100D & ISO 9001:2015 - Design & Manufacture of Electronic and Optoelectronic Components (Ref GB15/92780)

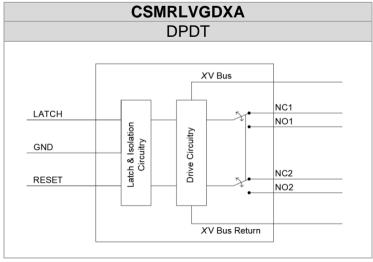
### **Military Compliance Specifications**

MIL-PRF-28750 - General Specification for Solid State Relay


### **Military Compliance Standards**


MIL-STD-883 - Test Method Standard Microcircuits


### SCREENING INFORMATION


Our LSSR range can be screened to MIL-PRF-28750, applying test methods from MIL-STD-883. Please contact us for more information relating to the applicable screening processes.

### **FUNCTIONAL DIAGRAMS**









For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



### **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C U.O.S

| Storage Temperature                      | -65° to +150°C           |
|------------------------------------------|--------------------------|
| Operating Temperature                    | -55° to +125°C           |
| Soldering Temperature                    | 260°C                    |
| Continuous Output Current per relay – Io | See Selection Guide *    |
| Output Voltage- Vo                       | See Selection Guide +10% |
| VLATCH                                   | 7V                       |
| VRESET                                   | 7V                       |
| ILATCH                                   | 15mA                     |
| IRESET                                   | 15mA                     |
| Input-to-Output Isolation Voltage        | û 500 V <sub>DC</sub>    |
| XVBus                                    | 50V                      |

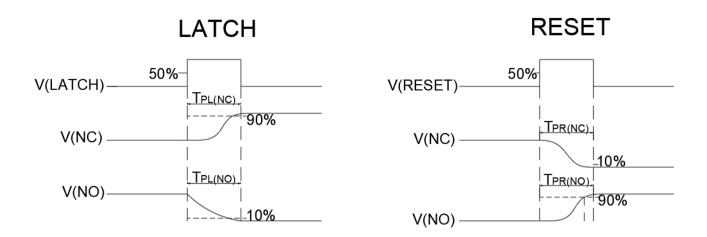
<sup>\*</sup>Current Limited by Package

### **ELECTRICAL CHARACTERISTICS**

 $T_A = -55^{\circ}C$  to  $+125^{\circ}C$  U.O.S

| Symbol                  | Test Conditions                                                                                               | Min                          | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max                                    | Units                                      |
|-------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|
|                         | Input                                                                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
| V <sub>Latch</sub>      | $I_{Latch} = 10mA$                                                                                            | 2                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | V                                          |
| V <sub>Rst</sub>        | $I_{Rst} = 10mA$                                                                                              | 3                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | V                                          |
| Latch                   | $V_{Latch} = 5V$                                                                                              | 7                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                      | mA                                         |
| I <sub>Rst</sub>        | $V_{Rst} = 5V$                                                                                                | ,                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | IIIA                                       |
| B <sub>VR</sub> (Latch) | Ι <sub>ο</sub> – 10 μΔ                                                                                        | 5                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                      | V                                          |
| B <sub>VR(Rst)</sub>    | <u>'</u>                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | V                                          |
|                         |                                                                                                               | 40                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                      | μs                                         |
| PW <sub>Rst</sub>       |                                                                                                               | 40                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                      | μs                                         |
|                         | •                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
| Due (Latabad)           |                                                                                                               | _                            | a l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                      | mA                                         |
| Tous (Laterieu)         |                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 111/-1                                     |
| Bus/Uplatched)          |                                                                                                               | _                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                      | mA                                         |
|                         | mode = Reset                                                                                                  |                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                            |
| lo                      |                                                                                                               | See s                        | election o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nuide                                  | A                                          |
| R(On)                   | )                                                                                                             | See selection guide (Page 7) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mΩ                                     |                                            |
| (3.1)                   | X = 10V  IO  50V                                                                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
| loL                     |                                                                                                               | _                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                    | μA                                         |
|                         | 0.00010.1                                                                                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | '                                          |
| I I                     | Coupled                                                                                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
|                         | $I_{I-O}$ in to out = $1\mu A$ ,                                                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F00                                    |                                            |
| VI-O                    | $T_A = 25^{\circ}C$                                                                                           | -                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                                    | V                                          |
|                         |                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
| T <sub>PL(NO)</sub>     |                                                                                                               | -                            | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                      |                                            |
|                         |                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | -                                          |
| T <sub>PL(NC)</sub>     | Y = 10\/ TO 50\/                                                                                              | -                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                      |                                            |
|                         | •                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | μs                                         |
| T <sub>PR(NO)</sub>     | 10% = 000 ocionion guide                                                                                      | -                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                      |                                            |
| _                       |                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                            |
| T <sub>PR(NC)</sub>     |                                                                                                               | -                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                      |                                            |
|                         | VLatch VRst ILatch IRst BVR(Latch) BVR(Rst) PWLatch PWRst  IBus (Latched) IO R(On) IOL  VI-O  TPL(NO) TPL(NC) | Input                        | Input   VLatch   VLatch   ILatch   = 10mA   VRst   IRst   = 10mA   VRst   VLatch   = 5V   TRst   VRst   = 5V   VRst   = 5V | Input   VLatch   ILatch = 10mA   3   5 | Input   VLatch   ILatch = 10mA   3   5   - |

### Notes:


- (1) Inputs shorted together; outputs shorted together
- (2) See propagation timing delay measurements
- (3) For data on SOA please contact sales at ISOCOM Ltd

For sales enquiries, or further information, please contact our sales office at -

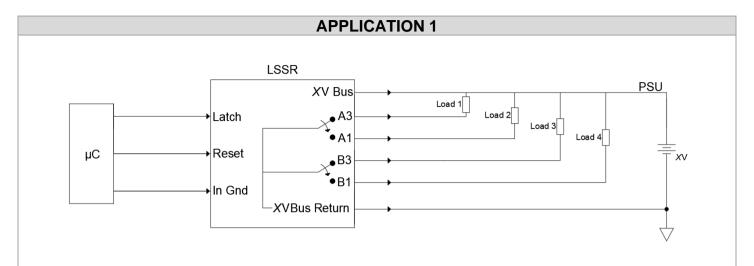
ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



### PROPAGATION TIMING DELAY MEASUREMENTS

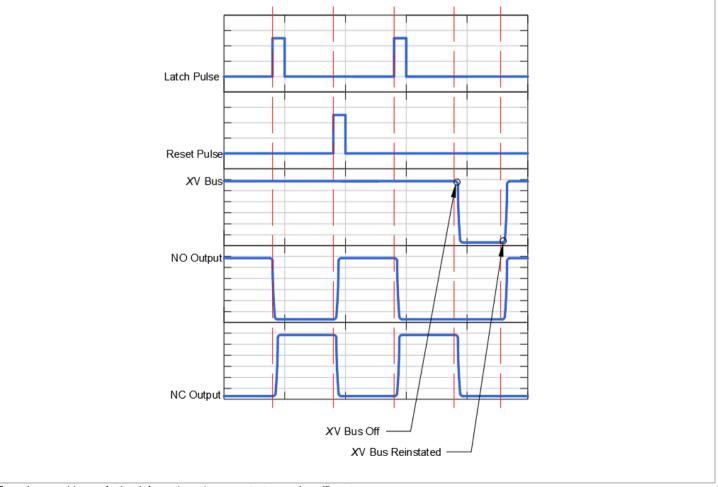


Switching Characteristics (Note: All Signals Measured with Respect to XV Bus Return)


### TRUTH TABLE

| Bus<br>Voltage | on     | on     | on     | on     | on     | on     | off  | on     |
|----------------|--------|--------|--------|--------|--------|--------|------|--------|
| Latch          | 0      | 1      | 0      | 0      | 0      | 1      | Х    | 0      |
| Reset          | 0      | 0      | 0      | 1      | 0      | 0      | Х    | 0      |
| NO<br>status   | Open   | Closed | Closed | Open   | Open   | Closed | Open | Open   |
| NC<br>status   | Closed | Open   | Open   | Closed | Closed | Open   | Open | Closed |

On initial powerup the LSSR is in its default condition. The normally open (NO) and normally closed (NC) outputs are open and closed respectively. Upon receiving a short input pulse to the LATCH input, the NO and NC terminals become closed and open circuit respectively. The device will then remain in the latched condition indefinitely or until a short input pulse to the RESET returns the outputs to their default conditions. Additionally, if the XV bus line is off while the LSSR is in the LATCH state, the device outputs automatically return to their default conditions upon the power reinstatement.




### **APPLICATIONS**

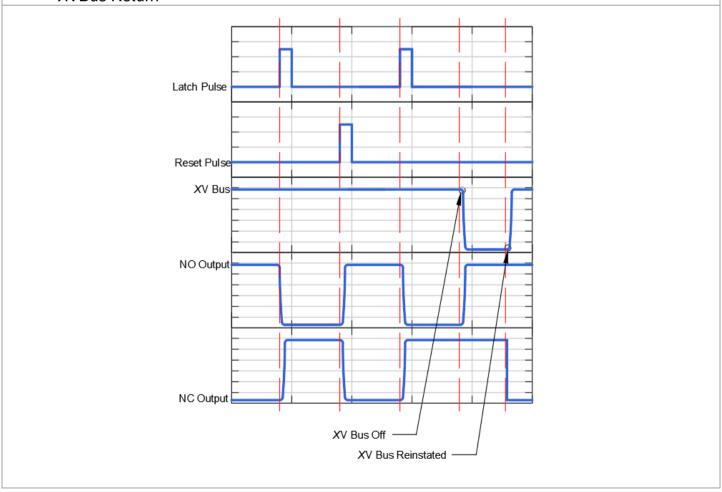


### Notes:

- For low side switching
- All loads connected to XV
- XV Bus Return has the sum of current from all loads and XV PSU
- Waveforms below measured at points A1/B1 (NO) and A3/B3 (NC) outputs with respect to XVBus Return



For sales enquiries, or further information, please contact our sales office at -


ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



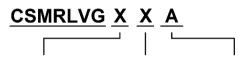
# LSSR XV Bus A3 A1 A1 B1 AND Load 1 Load 1 Load 1 Load 4 VA Load 4 VBus Return XVBus Return

### Notes:

- For low side switching
- Can have an XV power supply for a virtual Vcc
- VA and VB can be independent supplies (and lower than XV)
- Can also be expanded to independent PSUs on the loads of A3, A1, B3 and B1
- All output supplies must share the same ground
- XV Bus Return has the sum of currents from VA, VB and XV
- Waveforms below measured at points A1/B1 (NO) and A3/B3 (NC) outputs with respect to XVBus Return



For sales enquiries, or further information, please contact our sales office at -


ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



### **SELECTION GUIDE**

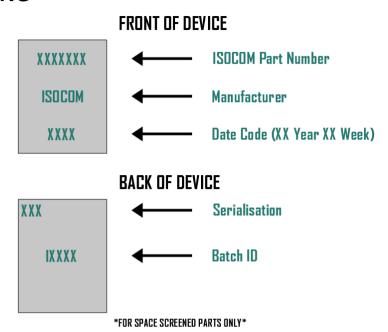
| Bus<br>Voltage<br>(V) | I <sub>D</sub> (A) | R <sub>(ON)</sub> (TYP)<br>(mΩ) |
|-----------------------|--------------------|---------------------------------|
| 10-50                 | 1<br>3<br>5<br>9   | 10                              |

### **ORDERING PARTS**



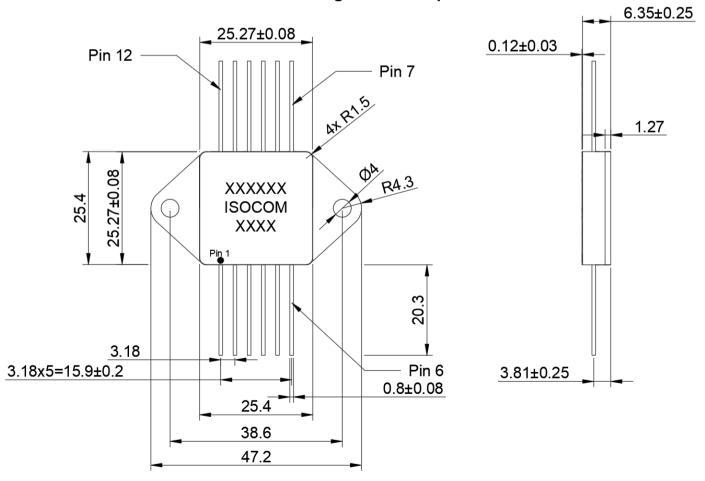
| Part Reference | Circuit                                      | Current (A)      | Package Type                     |
|----------------|----------------------------------------------|------------------|----------------------------------|
| CSMRLVGXXA     | A (SPST)<br>B (SPDT)<br>C (DPST)<br>D (DPDT) | 1<br>3<br>5<br>9 | Power Package 12<br>Pin Flatpack |

### PACKAGE STYLES AND CONFIGURATION OPTIONS


| Package                        | Power Package<br>12 Pin Flatpack |  |  |  |
|--------------------------------|----------------------------------|--|--|--|
| Lead Style                     | -                                |  |  |  |
| Channels                       | Optional                         |  |  |  |
| Common Channel Wiring          | -                                |  |  |  |
| ISOCOM Part Number and Options |                                  |  |  |  |
| Commercial                     | CSMRLVGXXA                       |  |  |  |
| Defense Screen Level           | CSMRLVGXXA/L2                    |  |  |  |
| Space Screen Level             | CSMRLVGXXA/L2S                   |  |  |  |
| Standard Gold Plate Finish     | Gold Plate                       |  |  |  |
| Solder Dipped                  | Option #20                       |  |  |  |

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom




### **DEVICE MARKING**



### **OUTLINE DRAWINGS**

### **Power Package 12 Pin Flatpack**



For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom



### PIN OUT INFORMATION

| Pin Number | Pin Function  |               |               |              |  |  |  |
|------------|---------------|---------------|---------------|--------------|--|--|--|
|            | SPST          | SPDT          | DPST          | DPDT         |  |  |  |
| 1          | <i>XV</i> Bus | <i>XV</i> Bus | <i>XV</i> Bus | XVBus        |  |  |  |
| 2          | Reset         | Reset         | Reset         | Reset        |  |  |  |
| 3          | GND           | GND           | GND           | GND          |  |  |  |
| 4          | Latch         | Latch         | Latch         | Latch        |  |  |  |
| 5          | -             | -             | NO2           | NO2          |  |  |  |
| 6          | -             | -             | NO2           | NO2          |  |  |  |
| 7          | -             | -             | -             | NC2          |  |  |  |
| 8          | -             | -             | -             | NC2          |  |  |  |
| 9          | NO1           | NO1           | NO1           | NO1          |  |  |  |
| 10         | NO1           | NO1           | NO1           | NO1          |  |  |  |
| 11         | -             | NC1           | -             | NC1          |  |  |  |
| 12         | -             | NC1           | -             | NC1          |  |  |  |
| Case       | XVBus Return  | XVBus Return  | XVBus Return  | XVBus Return |  |  |  |

### **DISCLAIMER**

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.









ISOCOM Limited is AS9100 certified for the design and manufacture of electronic and optoelectronic components.

For sales enquiries, or further information, please contact our sales office at -

ISOCOM Limited • 2 Fern Court • Bracken Hill Business Park • Peterlee • County Durham • SR8 2RR• United Kingdom